POWERFUL SOLUTIONS

Design for Reliability (DfR) in the high-tech industry

Eleonora Annigoni

Reliability Specialist Holland Innovative B.V.

Introduction

Eleonora Annigoni

Reliability Specialist

- Competencies: Reliability, Root Cause Analysis, Six Sigma
- 8-year experience in Reliability
- PhD in **Reliability of PV modules** at EPFL PV-Lab (2018)
- Experience in **high-tech industry**
 - PV → INDEOtec and CSEM (Neuchâtel), Flisom (Zurich)
 - Semiconductor equipment → ASML (the Netherlands, via Holland Innovative), ~20k employees

Competence House of HI

Solutions in product & process development, that have impact in <u>all key markets</u>

Competence House of HI

Solutions in product & process development, that have impact in all key markets

© Holland Innovative

Outline

- Introduction
 - Reliability: a probabilistic discipline
 - An example: the Weibull distribution
- Reliability requirements
 - Accelerated life tests (ALT)
- Compare data
 - High-tech industry example
- Conclusions

What is Reliability ?

The probability

without *failure*

for a certain period of time

when operated correctly in a specified environment

and under stated conditions

Why variation in Time-to-Failure?

- Because there is variation in load and strength:
 - Variations in production
 - Variability in product strength
 - Variability of use environment
 - Variability of usage conditions

Probabilistic approach!

Design for Reliability Product development process (or V Model)

Some of the tools...

 \bigcirc

Design for Reliability Product development process (or V Model)

Some of the tools...

Outline

- Introduction
 - Reliability: a probabilistic discipline
 - An example: the Weibull distribution
- Reliability requirements
 - Accelerated life tests (ALT)
- Compare data
 - High-tech industry example
- Conclusions

Weibull distribution

• Weibull: most widely used probability distribution for Reliability.

• $\beta \leftrightarrow$ Failure mode

Physical interpretation:

- $\beta < 1$ Infant mortality
- $\beta = 1$ **Random** failures
- $\beta > 1$ Wear out

- \rightarrow Production problems, quality control, misassemble,...
- \rightarrow Maintenance/human errors, Mother Nature,...
- \rightarrow Low/High Cycle Fatigue, Corrosion, Erosion,...
- **η** = time at which 63% of units will fail

Normal distribution is always bell-shaped

Probability density function = Prob of failure at time t

Weibull fits a wide range of shapes

Probability density function = Prob of failure at time t

Weibull fits a wide range of shapes

Probability density function = Prob of failure at time t

Weibull fits a wide range of shapes

Weibull Plot

Cumulative distribution function (CDF) = Cumulative prob of failure by time t

Plot modified from R. Abernethy, "The New Weibull Handbook"

Weibull Plot

Cumulative distribution function (CDF) = Cumulative prob of failure by time t

Plot modified from R. Abernethy, "The New Weibull Handbook"

Outline

- Introduction
 - Reliability: a probabilistic discipline
 - An example: the Weibull distribution
- Reliability requirements
 - Accelerated life tests (ALT)
- Compare data
 - High-tech industry example
- Conclusions

IEA "Review of Failures of Photovoltaic Modules" (2014), modified.

Question

What Reliability Requirement is there for EVA discoloring?

TISO 10kW PV plant in Ticino (CH) after 35 yrs of operation: Annigoni, E., Virtuani, A., Caccivio M., et al, "35 years of photovoltaics: Analysis of the TISO-10-kW solar plant, lessons learnt in safety and performance" Parts 1 & 2, PiP, 2019

Reliability requirement

- <u>Product</u>: EVA
- <u>Function</u>: Encapsulate the cells while letting light through
- Failure mode: EVA discoloring
- <u>Failure criterion</u>: Optical transmittance < threshold value
- Max % failures allowed: 10% of modules failed due to EVA discoloring during 25 yrs

There is more...:

- For stated conditions (load profile, usage, environment)
- Proven with certain confidence level
- Customer perception...

Hypothetical values

Reliability requirement

Hypothetical values

Main reliability testing types

Test for Failure

To find a.s.a.p. the different failure modes of the component/system

- HALT Highly Accelerated Life (Limit) Testing
- FMVT Failure Mode Validation Test
- MEOST Multiple Environment Overload Stress Test
- Step Stress testing

Test for Life (Reliability)

To determine life or verify if the component/system operates **according to prescribed Reliability requirements**

- LT Life Testing
- ALT Accelerated Life Testing
- Fully Censored testing
- DVT Design Validation Testing
- Step Stress Testing

Prove and Quantify Reliability

Find

the

Failure

Main reliability testing types

Test for Failure

To find a.s.a.p. the different failure modes of the component/system

- HALT Highly Accelerated Life (Limit) Testing
- FMVT Failure Mode Validation Test
- MEOST Multiple Environment Overload Stress Test
- Step Stress testing

Test for Life (Reliability)

To determine life or verify if the component/system operates according to prescribed Reliability requirements

- LT Life Testing
- ALT Accelerated Life Testing
- Fully Censored testing
- DVT Design Validation Testing
- Step Stress Testing

Prove and Quantify Reliability

Find

the

Failure

Hypothetical values

s = number of suspensions (i.e. survivors)

New EVA design – Prediction

AF = Acceleration factor

Hypothetical values

AF = Acceleration factor

Hypothetical values

Outline

- Introduction
 - Reliability: a probabilistic discipline
 - An example: the Weibull distribution
- Reliability requirements
 - Accelerated life tests (ALT)
- Compare data
 - High-tech industry example
- Conclusions

© Holland Innovative

Compare data

2 sets are to be compared, e.g. from:

- New vs Old Design (e.g. new BOM)
- Geographic locations
- Product Usage
- Production lots
- Vendors

Production lots

New vs Old Design (e.g. new BS)

Hypothetical values

Hypothetical values

Outline

- Introduction
 - Reliability: a probabilistic discipline
 - An example: the Weibull distribution
- Reliability requirements
 - Accelerated life tests (ALT)
- Compare data
 - High-tech industry example
- Conclusions

Weibull Analysis of Power Cables Old Design versus New Design

Elly van den Bliek

Sr. Reliability & Functional Safety Specialist

Power cable and usage

- Power cable, flex-type, flat cable
- Cable load:
 - Strokes (counted in cycles), in linear motion, with fixed bend radius
 - One cable end is fixed, other cable end moves along horizontal axis
 - Number of cycles relevant
 - Forces not relevant

& data speak!

- Max 6% failed @ 50 kcycles
 - Statements with 50% CL
- Design life = 50 kcycles
- Failure mechanism: Expected general wear, Weibull $\beta \sim 2 2.5... \rightarrow$ Let products
- Failure criterion: No power through cable

Proved by ALT

- Set up as 0-failure test but failures occurred
- 3 test rigs, where power cables can be replaced with new cables upon failure.

Old Design Power cables

- Old Design: 3 tested
- During test, 2 failed and replaced by new cables
- Failures at 71 kcycles and 128 kcycles
- Suspensions (i.e. survivors) of 47, 100, and 129 kcycles

- Resulting Weibull $\beta \sim 2.1$
 - Fits with expected failure mechanism of general wear
- Wear observed on failed Power cables

New Design Power cables

holland

- New Design: 3 tested
- During test, 1 failed
- Failure at 149 kcycles
- Suspensions of 62, 110, and 160 kcycles
- Assume failure is due to same failure mechanism as Old design – confirmed by RCA* on failed cable
- Plot Weibayes** with same Weibull $\beta \sim 2.1$

^{**} Weibayes is a Weibull with known β

Outline

- Introduction
 - Reliability: a probabilistic discipline
 - An example: the Weibull distribution
- Reliability requirements
 - Accelerated life tests (ALT)
- Compare data
 - High-tech industry example
- Conclusions

Conclusions

Conclusions

Thank you for your attention!

Eleonora Annigoni

Reliability and Root Cause Analysis Specialist

eleonora.annigoni@holland-innovative.nl

Competences and Projects https://www.holland-innovative.nl/

Trainings https://www.holland-innovative.nl/academy/

Some literature references in next slide!

Literature

- Abernethy R., "The New Weibull Handbook, Reliability and Statistical Analysis for Predicting Life, Safety, Supportability, Risk, Cost and Warranty Claims"
- O'Connor, P.D.T., "Practical Reliability Engineering", John Wiley and Sons, New York, 2002
- Jensen, F., "Electronic component reliability", J. Wiley & Sons, Chichester, 1995, ISBN 0-471-95296-6
- Kececioglu, D., "Reliability and Life testing Handbook", PTR Prentice-Hall, 1993
- Levin, M.A., Kalal, T.T., "Improving Product Reliability", Wiley Series in Quality and Reliability Engineering, 2005, ISBN 9780470854495
- Military Handbook 810G "Environmental engineering considerations and laboratory tests", 2008
- Nelson, Wayne B., "Accelerated Testing: Statistical Models, Test Plans, and Data Analysis", Wiley Series in Probability and Statistics, 2004, ISBN: 978-0-471-69736-7

Extra

POWERFUL SOLUTIONS

Drivers in Testing for Life

Reliability Testing - Types

innovative

ALT requires 2 models

- 1. Probability distribution: at *each* stress level tested
- 2. Life-stress model (e.g. Arrhenius) \Rightarrow extrapolation of prob. distr. at any stress level

Old vs New design

